11 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationMagnetic Resonance (MR) is a relatively risk-free and flexible imaging modality that is widely used for studying the brain. Biophysical and chemical properties of brain tissue are captured by intensity measurements in T1W (T1-Weighted) and T2W (T2-Weighted) MR scans. Rapid maturational processes taking place in the infant brain manifest as changes in co{\tiny }ntrast between white matter and gray matter tissue classes in these scans. However, studies based on MR image appearance face severe limitations due to the uncalibrated nature of MR intensity and its variability with respect to changing conditions of scan. In this work, we develop a method for studying the intensity variations between brain white matter and gray matter that are observed during infant brain development. This method is referred to by the acronym WIVID (White-gray Intensity Variation in Infant Development). WIVID is computed by measuring the Hellinger Distance of separation between intensity distributions of WM (White Matter) and GM (Gray Matter) tissue classes. The WIVID measure is shown to be relatively stable to interscan variations compared with raw signal intensity and does not require intensity normalization. In addition to quantification of tissue appearance changes using the WIVID measure, we test and implement a statistical framework for modeling temporal changes in this measure. WIVID contrast values are extracted from MR scans belonging to large-scale, longitudinal, infant brain imaging studies and modeled using the NLME (Nonlinear Mixed Effects) method. This framework generates a normative model of WIVID contrast changes with time, which captures brain appearance changes during neurodevelopment. Parameters from the estimated trajectories of WIVID contrast change are analyzed across brain lobes and image modalities. Parameters associated with the normative model of WIVID contrast change reflect established patterns of region-specific and modality-specific maturational sequences. We also detect differences in WIVID contrast change trajectories between distinct population groups. These groups are categorized based on sex and risk/diagnosis for ASD (Autism Spectrum Disorder). As a result of this work, the usage of the proposed WIVID contrast measure as a novel neuroimaging biomarker for characterizing tissue appearance is validated, and the clinical potential of the developed framework is demonstrated

    Characterizing growth patterns in longitudinal MRI using image contrast

    Get PDF
    pre-printUnderstanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns

    Characterizing growth patterns in longitudinal MRI using image contrast

    Get PDF
    pre-printUnderstanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation based analysis, particularly for distinguishing between normal and abnormal growth patterns

    A longitudinal structural MRI study of change in regional contrast in Autism Spectrum Disorder

    Get PDF
    pre-printAuthors: Avantika Vardhan1, Joseph Piven2, Marcel Prastawa3, Guido Gerig3 Institutions: 1Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, United States, 2Dept of Psychiatry, UNC School of Medicine, Chapel Hill, NC, 3University of Utah, Salt Lake City, UT Introduction: The brain undergoes tremendous changes in shape, size, structure, and chemical composition, between birth and 2 years of age [Rutherford, 2001]. Existing studies have focused on morphometric and volumetric changes to study the early developing brain. Although there have been some recent appearance studies based on intensity changes [Serag et al., 2011], these are highly dependent on the quality of normalization. The study we present here uses the changes in contrast between gray and white matter tissue intensities in structural MRI of the brain, as a measure of regional growth [Vardhan et al., 2011]. Kernel regression was used to generate continuous curves characterizing the changes in contrast with time. A statistical analysis was then performed on these curves, comparing two population groups : (i) HR+ : high-risk subjects who tested positive for Autism Spectrum Disorder (ASD), and (ii) HR- : high-risk subjects who tested negative for ASD

    Modeling longitudinal MRI changes in populations using a localized, information-theoretic measure of contrast

    Get PDF
    pre-printLongitudinal MR imaging during early brain development provides important information about growth patterns and the development of neurological disorders. We propose a new framework for studying brain growth patterns within and across populations based on MRI contrast changes, measured at each time point of interest and at each voxel. Our method uses regression in the LogOdds space and an information-theoretic measure of distance between distributions to capture contrast in a manner that is robust to imaging parameters and without requiring intensity normalization. We apply our method to a clinical neuroimaging study on early brain development in autism, where we obtain a 4D spatiotemporal model of contrast changes in multimodal structural MRI

    Quantifying regional growth patterns through longitudinal analysis of distances between multimodal MR intensity distributions

    Get PDF
    pre-printQuantitative analysis of early brain development through imaging is critical for identifying pathological development, which may in turn affect treatment procedures. We propose a framework for analyzing spatiotemporal patterns of brain maturation by quantifying intensity changes in longitudinal MR images. We use a measure of divergence between a pair of intensity distributions to study the changes that occur within specific regions, as well as between a pair of anatomical regions, over time. The change within a specific region is measured as the contrast between white matter and gray matter tissue belonging to that region. The change between a pair of regions is measured as the divergence between regional image appearances, summed over all tissue classes. We use kernel regression to integrate the temporal information across different subjects in a consistent manner. We applied our method on multimodal MRI data with T1-weighted (T1W) and T2-weighted (T2W) scans of each subject at the approximate ages of 6 months, 12 months, and 24 months. The results demonstrate that brain maturation begins at posterior regions and that frontal regions develop later, which matches previously published histological, qualitative and morphometric studies. Our multi-modal analysis also confirms that T1W and T2W modalities capture different properties of the maturation process, a phenomena referred to as T2 time lag compared to T1. The proposed method has potential for analyzing regional growth patterns across different populations and for isolating specific critical maturation phases in different MR modalities

    MODELING LONGITUDINAL MRI CHANGES IN POPULATIONS USING A LOCALIZED, INFORMATION-THEORETIC MEASURE OF CONTRAST

    No full text
    Longitudinal MR imaging during early brain development provides important information about growth patterns and the development of neurological disorders. We propose a new framework for studying brain growth patterns within and across populations based on MRI contrast changes, measured at each time point of interest and at each voxel. Our method uses regression in the LogOdds space and an informationtheoretic measure of distance between distributions to capture contrast in a manner that is robust to imaging parameters and without requiring intensity normalization. We apply our method to a clinical neuroimaging study on early brain development in autism, where we obtain a 4D spatiotemporal model of contrast changes in multimodal structural MRI. Index Terms — Contrast, longitudinal MRI, regression, Kullback-Leible

    Multi-Gene Phylogenetic Approach for Identification and Diversity Analysis of <i>Bipolaris maydis</i> and <i>Curvularia lunata</i> Isolates Causing Foliar Blight of <i>Zea mays</i>

    No full text
    Bipolaris species are known to be important plant pathogens that commonly cause leaf spot, root rot, and seedling blight in a wide range of hosts worldwide. In 2017, complex symptomatic cases of maydis leaf blight (caused by Bipolaris maydis) and maize leaf spot (caused by Curvularia lunata) have become increasingly significant in the main maize-growing regions of India. A total of 186 samples of maydis leaf blight and 129 maize leaf spot samples were collected, in 2017, from 20 sampling sites in the main maize-growing regions of India to explore the diversity and identity of this pathogenic causal agent. A total of 77 Bipolaris maydis isolates and 74 Curvularia lunata isolates were screened based on morphological and molecular characterization and phylogenetic analysis based on ribosomal markers—nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region, 28S nuclear ribosomal large subunit rRNA gene (LSU), D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA), and protein-coding gene-glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Due to a dearth of molecular data from ex-type cultures, the use of few gene regions for species resolution, and overlapping morphological features, species recognition in Bipolaris has proven difficult. The present study used the multi-gene phylogenetic approach for proper identification and diversity of geographically distributed B. maydis and C. lunata isolates in Indian settings and provides useful insight into and explanation of its quantitative findings
    corecore